Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1,3-Benzothiazole-6-carboxamidinium chloride dihydrate

Dubravka Matković-Čalogović, ${ }^{\text {a* }}$ Zora Popović, ${ }^{\text {a }}$ Vesna Tralić-Kulenović, ${ }^{\text {b }}$ Livio Racanè ${ }^{\text {b }}$ and Grace KarminskiZamola ${ }^{\text {c }}$

${ }^{\text {a }}$ Laboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, UI. kralja Zvonimira 8, 10000 Zagreb, Croatia,
${ }^{\mathbf{b}}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia, and ${ }^{\mathbf{c}}$ Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
Correspondence e-mail: dubravka@chem.pmf.hr

Received 23 December 2002
Accepted 20 January 2003
Online 11 March 2003
The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has been synthesized and characterized both spectroscopically and structurally. The structure consists of 1,3-benzothiazole-6-carboxamidinium cations, chloride anions and water molecules, all interconnected by hydrogen bonds into a three-dimensional network. The 1,3-benzothiazole moiety is inclined to the 6 -amidine group by 36.71 (9) ${ }^{\circ}$.

Comment

Small and simple heterocyclic structures often exhibit complex biological properties. Substituted benzothiazoles show antitumor (Goldfarb et al., 1999), anti-infective and antifungal (Sener et al., 2000), and antihelmintic activities (Nadkarn et al., 2000). In order to find new potent antitumor benzothiazole compounds (Racanè et al., 2001), we have introduced an amidine group into the benzothiazole moiety. This report describes the synthesis and crystal structure of a new cationic compound, namely 1,3-benzothiazole-6-carboxamidinium chloride dihydrate, (I). Substituted benzothiazoles that are not bound to a metal are rare.

As depicted in the Scheme, the starting compound was 6 -cyanobenzothiazole (Boggust \& Cocker, 1949). The conversion of the cyano function into the amidine function

Figure 1
A view of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
was achieved using the Pinner method (Boyd, 1991). The imidoyl ether hydrochloride that was generated as an intermediate product was converted into the free base with potassium carbonate and was then converted with ammonium chloride into (I).

The structure comprises 1,3-benzothiazole-6-carboxamidinium cations, chloride anions and water molecules (Fig. 1); pertinent bond lengths and angles are given in Table 1. The 1,3-benzothiazole moiety is planar, with the largest deviation from the plane being that of atom C6 $[0.023$ (2) Å]. However, the entire 1,3-benzothiazole-6-carboxamidinium cation is not planar, since the plane through the 6 -amidine group is inclined to that through the 1,3 -benzothiazole moiety by $36.71(9)^{\circ}$. The differences in the $\mathrm{C}-\mathrm{C}$ bonds within the benzene ring are usual for such fused rings. The bond angle around the S atom is within the range found in the five-membered rings of other substituted benzothiazole derivatives (Davidović et al., 1999; Popović et al., 2001, 2002). The hydrogen-bond pattern is very interesting, since all $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ donor atoms are

Figure 2
The packing of the ions and molecules in the unit cell. Hydrogen bonds are indicated by dashed lines.
involved in the hydrogen bonding to the acceptor atoms, i.e. endocyclic N atoms, Cl ions and water O atoms. Water molecules have an important role since they form six out of the eight hydrogen bonds that interconnect the ions and molecules into a three-dimensional network (Fig. 2 and Table 2).

Experimental

A solution of 6-cyanobenzothiazole ($4 \mathrm{~g}, 25 \mathrm{mmol}$) in dry 2-(2ethoxyethoxy)ethanol (60 ml) was cooled to 278 K and saturated with HCl . The flask was then stoppered and the contents stirred at room temperature for 2 d (until IR spectra indicated the disappearance of the nitrile peak). Excess HCl was removed from the suspension with a stream of N_{2}. The reaction mixture was poured into dry ether (400 ml), and crystals of the imidoyl ether hydrochloride were filtered off, washed with dry ether and dried under reduced pressure over KOH. The imidoyl ether hydrochloride was poured into cold water $(150 \mathrm{ml})$ containing $20 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(20 \mathrm{ml})$ and the free base was extracted with CHCl_{3}. The solvent was evaporated and the oil residue was dissolved in ethanol (100 ml). A solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(1.4 \mathrm{~g}, 26 \mathrm{mmol})$ in water $(25 \mathrm{ml})$ was added to the ethanol solution and the mixture was heated under reflux for 5 h . After filtration (charcoal), the hot reaction mixture was left to stand at room temperature for 4 d . Compound (I) separated as colourless crystals [m.p. $=548 \mathrm{~K}$, yield $=3.94 \mathrm{~g}(68 \%)$]. Spectroscopic analysis, IR $(\mathrm{KBr}$, cm^{-1}): 3265, $3080(\mathrm{NH}), 1679(\mathrm{C}=\mathrm{N})$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSOd_{6}): $\delta 9.67(s, 1 \mathrm{H}, \mathrm{H}-2), 9.41$ (br $s, 4 \mathrm{H}, \mathrm{H}-\mathrm{NH}$, disappeared with $\left.\mathrm{D}_{2} \mathrm{O}\right), 8.74\left(d, 1 \mathrm{H}, J_{7,5}=1.7 \mathrm{~Hz}, \mathrm{H}-7\right), 8.31\left(d, 1 \mathrm{H}, J_{4,5}=8.6 \mathrm{~Hz}, \mathrm{H}-4\right)$, $7.95\left(d d, 1 \mathrm{H}, J_{5,4}=8.6 \mathrm{~Hz}, J_{5,4}=1.8 \mathrm{~Hz}, \mathrm{H}-5\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta 166.2(s), 161.3(d), 156.5(s), 134.5(s), 126.4(d), 125.7$ (s), 124.2 (d), $123.8(d)$. Analysis, calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{~S} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$ 38.48, H 4.84, N 16.83, Cl 14.20\%; found: C 38.67, H 4.48 , N 17.03 , Cl 14.64\%.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=249.72$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=16.9296$ (9) A
$b=9.3433$ (5) \AA
$c=7.3389$ (15) \AA
$V=1160.9(3) \AA^{3}$
$Z=4$
$D_{x}=1.429 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Philips PW1100 diffractometer (updated by Stoe)
ω scans
Absorption correction: ψ scan
(X-RED; Stoe \& Cie, 1995)
$T_{\text {min }}=0.792, T_{\text {max }}=0.893$
4203 measured reflections
3377 independent reflections
2945 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}	$(\Delta / \sigma)_{\text {max }}<$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$	$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{\text {A }}{ }^{-3}$
$w R\left(F^{2}\right)=0.081$	$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
$S=1.06$	Extinction correction: SHELXL97
3377 reflections	Extinction coefficient: 0.083 (4)
185 parameters	Absolute structure: Flack (1983)
All H -atom parameters refined $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0471 P)^{2}\right.$	Flack parameter $=0.02(6)$
$+0.0723 P]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$	

Mo $K \alpha$ radiation
Cell parameters from 60
reflections
$\theta=12.5-17.8^{\circ}$
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.47 \times 0.42 \times 0.22 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.034 \\
& \theta_{\max }=30.0^{\circ} \\
& h=-23 \rightarrow 23 \\
& k=-13 \rightarrow 13 \\
& l=-10 \rightarrow 10 \\
& 4 \text { standard reflections } \\
& \text { frequency: } 90 \mathrm{~min} \\
& \text { intensity decay: } 4 \%
\end{aligned}
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.25 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.083 (4)
Absolute structure: Flack (1983)
Flack parameter $=0.02(6)$

Table 1
Selected geometric parameters ($\left(\AA_{,}^{\circ}\right)$.

S-C1	$1.7292(19)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.297(3)$
$\mathrm{S}-\mathrm{C} 2$	$1.7283(16)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.393(2)$
$\mathrm{C} 1-\mathrm{S}-\mathrm{C} 2$	$88.43(9)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 2$	$114.67(15)$
$\mathrm{S}-\mathrm{C} 2-\mathrm{C} 3$	$128.93(12)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$125.70(15)$
$\mathrm{S}-\mathrm{C} 2-\mathrm{C} 7$	$109.79(12)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$	$121.80(16)$
$\mathrm{S}-\mathrm{C} 1-\mathrm{N} 1$	$117.76(13)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 4$	$118.81(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$109.34(14)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 4$	$119.38(15)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 21 \cdots \mathrm{O} 1$	$0.85(2)$	$2.11(2)$	$2.950(3)$	$171(2)$
$\mathrm{N} 2-\mathrm{H} 22 \cdots 1^{\mathrm{i}}$	$0.84(3)$	$2.37(3)$	$3.078(2)$	$142(2)$
$\mathrm{N} 3-\mathrm{H} 31 \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.81(3)$	$2.49(3)$	$3.3023(18)$	$171(3)$
$\mathrm{N} 3-\mathrm{H} 32 \cdots 2^{\mathrm{i}}$	$0.82(3)$	$1.96(3)$	$2.778(2)$	$179(4)$
$\mathrm{O} 1-\mathrm{H} 101 \cdots \mathrm{Cl}$				
$\mathrm{O} 1-\mathrm{H} 102 \cdots \mathrm{Cl}$	$0.91(4)$	$2.27(3)$	$3.159(2)$	$165(3)$
$\mathrm{O} 2-\mathrm{H} 201 \cdots \mathrm{Cl}$	$0.73(5)$	$2.41(4)$	$3.136(2)$	$170(3)$
$\mathrm{O} 2-\mathrm{H} 202 \cdots \mathrm{O} 1^{\mathrm{v}}$	$0.77(4)$	$2.41(4)$	$3.183(3)$	$177.4(17)$

Symmetry codes: (i) $x, 1+y$, z; (ii) $1-x, 1-y, z-\frac{1}{2}$; (iii) $\frac{3}{2}-x, \frac{1}{2}+y, z-\frac{1}{2}$; (iv) $\frac{1}{2}+x, \frac{3}{2}-y, z ;(\mathrm{v}) \frac{3}{2}-x, y-\frac{1}{2}, z-\frac{1}{2}$.

H atoms were found in a difference Fourier map and refined isotropically, giving $\mathrm{C}-\mathrm{H}$ distances in the range 0.91 (3)-0.96 (2) \AA, $\mathrm{O}-\mathrm{H}$ distances in the range $0.73(5)-0.91$ (4) \AA and $\mathrm{N}-\mathrm{H}$ distances in the range 0.81 (3)-0.85 (2) \AA.

Data collection: STADI4 (Stoe \& Cie, 1995); cell refinement and data reduction: X-RED (Stoe \& Cie, 1995); structure solution: SHELXS97 (Sheldrick, 1990); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON98 (Spek, 2003).

The authors thank the Ministry of Science and Technology of the Republic of Croatia for financial support (grant Nos. 119632 and 119633).

Supplementary data for this paper are available from the IUCr electronic
archives (Reference: GG1150). Services for accessing these data are
described at the back of the journal.

References

Boggust, W. A. \& Cocker, W. (1949). J. Chem. Soc. pp. 355-361.
Boyd, G. V. (1991). The Chemistry of Amidines and Imidates, Vol. 2, edited by
S. Patai, pp. 339-366. New York: John Wiley and Sons.

Davidović, N., Matković-Čalogović, D., Popović, Z. \& Fišer-Jakić, L. (1999). Acta Cryst. C55, 119-120.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Goldfarb, R. H., Kitson, R. P., Brunson, K. W., Yoshino, K., Horohita, N.,
Kotera, Y., Inoue, Y. \& Ohashi, M. (1999). Anticancer Res. 19, 1663-1668.
Nadkarn, A. B., Kamath, R. V. \& Khadse, G. B. (2000). Indian J. Heterocycl. Chem. 9, 309-310.
Popović, Z., Mrvoš-Sermek, D., Soldin, Ž. \& Tralić-Kulenović, V. (2001). Acta Cryst. C57, 20-21.
Popović, Z., Soldin, Ž., Pavlović, G., Matković-Čalogović, D., Mrvoš-Sermek, D. \& Rajić, M. (2002). Struct. Chem. 13, 425-436.

Racanè, L., Tralić-Kulenović, V., Fišer-Jakić, L., Boykin, D. W. \& KarminskiZamola, G. (2001). Heterocycles, 55, 2085-2098.
Sener, E. A., Arpaci, O. T., Yalcin, I. \& Altanlar, N. (2000). Farmaco, 55, 397-405. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1995). STADI4 (Version 1.05b) and X-RED (Version 1.05b). Stoe \& Cie, Darmstadt, Germany.

